FIELDBUS

Operative Manual

Manual_FIELDBUS_V1

INDEX

1. GENERALITIES	
1.1 TECHNICAL DATA	
1.2 CONNECTION	
1.3 SELECTION OF THE PROFIBUS SERIAL COMMUNICATION N	10DE4
1.4 DGT1 VERSION 7.13 AND FOLLOWING ONES	
1.5 SERIAL COMMUNICATION PARAMETERS	5
2. INPUT AND OUTPUT DATA AREAS	
2.1 INPUT DATA AREA	
2.1.1 INPUT STATUS REGISTER	
2.1.2 OUTPUT STATUS REGISTER	9
2.1.3 COMMAND STATUS REGISTER	9
2.2 OUTPUT DATA AREA	9
2.2.1 COMMAND REGISTER	
2.3 SET-UP AREA	
3. CALIBRATION SEQUENCE	
4. SETTING OPERATING MODE	
5. HUB MODE	25
 5. HUB MODE	
4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA	
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 	
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA- 	
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA- 5.2.3 NETWORK STATUS PAGE- 	25
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA- 5.2.3 NETWORK STATUS PAGE- 5.2.4 SCALES SCAN RATE. 	25
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA- 5.2.3 NETWORK STATUS PAGE- 5.2.4 SCALES SCAN RATE 5.3 GSD FILE 	25
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA 5.2.3 NETWORK STATUS PAGE- 5.2.4 SCALES SCAN RATE 5.3 GSD FILE 5.4 FILE EDS ETHERNET/IP 	25
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA 5.2.3 NETWORK STATUS PAGE- 5.2.4 SCALES SCAN RATE 5.3 GSD FILE 5.4 FILE EDS ETHERNET/IP 5.5 FILE GSDML PROFINET 	25
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA- 5.2.3 NETWORK STATUS PAGE- 5.2.4 SCALES SCAN RATE 5.3 GSD FILE 5.4 FILE EDS ETHERNET/IP 5.5 FILE GSDML PROFINET 5.2 FILE ESI ETHERCAT 	25
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA- 5.2.3 NETWORK STATUS PAGE- 5.2.4 SCALES SCAN RATE 5.3 GSD FILE 5.4 FILE EDS ETHERNET/IP 5.5 FILE GSDML PROFINET 5.2 FILE ESI ETHERCAT 5.3 FILE EDS CANOPEN 	25
 4. SETTING OPERATING MODE 5. HUB MODE 5.1 OUTPUT DATA AREA 5.2 INPUT DATA AREA 5.2.1 NETWORK PAGE DATA 5.2.2 SCALE 1N PAGE DATA- 5.2.3 NETWORK STATUS PAGE- 5.2.4 SCALES SCAN RATE 5.3 GSD FILE 5.4 FILE EDS ETHERNET/IP 5.5 FILE GSDML PROFINET 5.2 FILE ESI ETHERCAT 5.3 FILE EDS CANOPEN 5.4 FILE EDS DEVICENET 	25

1. GENERALITIES

The Profibus communication protocol defines the structure of the messages and the communication mode between one or more "master" devices which manage the system and one or more "slave" devices which respond to the interrogations of a master (technical master-slave, of the multi-master type).

The masters, called also active devices, define the data traffic on the bus and periodically scan the slaves; when a master has an access permit (token), it can transmit data without external requests. The slaves, defined also as passive devices, do not have the access permit to the bus, but can only either confirm the received messages or transmit messages when requested by a master. A master can either address single slaves or transmit a broadcast message to all (in the multi-master case each slave is linked to a master).

1.1 <u>TECHNICAL DATA</u>

- Power Supply: from 12 to 24 V;
- Max. absorption: 250 mA (with 12 V power supply);
- HUB configuration: simultaneous check up to 16 weighing scales at the same time;
- 485 communication opt isolated against electric or electrostatic discharges;
- Addressing:
 - Canopen: up to 127 different address (from 1 to 127);
 - Ethercat: automatic addressing (not settable);
 - Profinet: uses addressing through IPv4;
 - Devicenet: up to 64 different address (from 0 to 63 through MAC address);
 - Profibus: up to 99 different address (from 0 to 98);
- Baudrate:
 - Canopen: from 10 Kbit/s to 1 Mbit/s;
 - Ethercat: from 9600 bit/s to 115200 bit/s;
 - Profinet: depends on the network speed (up to 100 Mbit/s);
 - Devicenet: from 9600 bit/s to 115200 bit/s;
 - Profibus: from 9600 bit/s to 12 Mbit/s;

1.2 CONNECTION

Every DGT is provided with two parallel 485 ports with RJ45 connector, that port is used to connect DGT with the corresponding port on converter (profibus, ethercat, devicenet, etc.). Many DGTs can be connected in line (up to 16 weighing scales), to do this you need to connect a DGT to the next one and the first DGT to the converter and, after a proper modify of the setup, it will create a net that can be managed by one or more PC.

The converters differ for connection's method to PC:

- -Ethercat: connection to PLC through RJ45;
- -Canopen: connection to PLC through 3 wires;
- -Devicenet: connection to PLC through 5 wires (only 2 if you have already the power supply);
- Profibus: connection to PLC through DB9 female connector;
- Profinet: connection to PLC through RJ45;

1.3 SELECTION OF THE PROFIBUS SERIAL COMMUNICATION MODE

To select the Profibus communication protocol one should enter the *SET-UP ENVIRONMENT* of the instrument (see Figure 1):

Input in the Set-up Environment

- Turn on the indicator, press the ZERO key or the TARE key during the countdown (the display shows the "Lype" menu).
- Select " $5E \perp P$ " (using the ZERO or TARE keys) \Rightarrow press PRINT to confirm the step.
- Select " $5E_{r}$, "AL" (using the ZERO or TARE keys) \Rightarrow press PRINT to confirm the step.
- Select "Pc_5EL" (using the ZERO or TARE keys) ⇒ press PRINT to enter in the Selection menu of the PC port
 - > Select "485" with DGT4PB indicator or "CON I" with DGTQPB indicator and press PRINT to confirm.
- Select " $[o\Pi_PE"]$ (using the ZERO or TARE keys) \Rightarrow press PRINT to enter in the:

Set-up menu of the Communication Parameters of the PC port:

> The "P[Π_{od} E" item appears \Rightarrow press PRINT to enter in this submenu and select the "ProF ibu5" item \Rightarrow press PRINT again to confirm.

Now the setting of the instrument's serial address is requested.

Instrument serial address

 \Rightarrow for a few instants the "Pro-Add" message is displayed \Rightarrow then type the serial address of the instrument (or slave) \Rightarrow confirm the entered value with PRINT.

 \succ Now the step " $\Box \cap PRE$ " is visible.

Setting this step to "YE5" you enable the compatibility of the profibus module communication with "**GSD.V.1**" file.

Leaving it on "oo" the profibus comunications is compatible with "GSD.V.2" file.

- Press various times the C key until the message "5AUE?" appears on the display.
- Press PRINT to confirm the changes made or another key for not saving.
- While turning on, check that the display shows "P_bu5_ m" then "P_bu5_0h";
- After profibus startup, the display shows the version of GSD file to use (GSD.V.1 or GSD.V.2), downloadable from <u>www.diniargeo.com</u>

CAREFUL: If you have made some changes to profibus communication parameters of DGT, it's necessary remove the power supply and restart the instrument.

1.4 DGT1 VERSION 7.13 AND FOLLOWING ONES

Since version 7.13 there's not a choice between $P_{\Box} \Box F_{\Box} b$ and $P_{\Box} \Box \Box L b$ but there is only the item $P_{\Box} \Box \Box L b$.

Route → SELuP/SEr (RL/CON PC/PC NOdE/FLd_buS

Once in <u>FLd_bu5</u> we have :

<u>1)Lu5_LYP</u> selezione del tipo di bus fra:

- -Profibus → Profibus
- $\ \ \mathsf{E}\mathsf{E}\mathsf{h}_{-} \ \mathsf{IP} \rightarrow \mathsf{E}\mathsf{thermet}/\mathsf{IP}$
- -Profinet → Profinet
- -Eth_CAE \rightarrow Ethercat
- -ERnoPn → CANOpen
- $-dEU_nEE \rightarrow DeviceNet$

After selecting the type of bus you must enter the appropriate parameters:

- **Profibus**: node ID (nodE_ id)
- Ethernet/IP, Profinet:
 - o Rut_cF9: auto IP configuration (no/yes)
 - ∘ *P_*: IP address
 - o _nEŁ_∏5ħ: Subnet mask
 - GAL_BAS: Gateway
- CANopen:
 - o nod_Add (1-127): node address
 - ・ ら月ぃd_ r: baud-rate, valori: 1MB, 800kB, 500kB, 250kB, 125kB, 100kB, 50kB, 20kB, 10kB
- DeviceNet:
 - о ПЯс_ ид (0-63): MAC ID
 - о БЯлд_г baud-rate, valori: 500kB, 250kB, 125kB

<u>2) היה ח_5CA</u>: number of the scales of the 485 sub-network managed by the hub device (1 to 16)

3) **5EA_Add** (visible if NUM.SCA is greater than 1): 485 address of the scale, if null_5EA is equal to 1 the 485 address is set equal to 1.

1.5 SERIAL COMMUNICATION PARAMETERS

In case you selected a protocol other than Profibus or have set more of a balance you can set the baud rate.

To get the best performance set the baud rate 115200.

2. INPUT AND OUTPUT DATA AREAS

There are two data areas, an input and an output one, defined in this way due to the master's point of view: while the input area is read by this device, the output one is written. All the numeric values have the Big Endian format (the 1st byte is the most significant one).

2.1 INPUT DATA AREA

The input data area is <u>read</u> by the master (is therefore read by the instrument) and is made up of 16 registers, each of 2 bytes (32 bytes overall).

N°Re	eg. Input Registers		N° bytes
0	Gross Weight Value	(byte 3)	0
	Gross Weight Value	(byte 2)	1
1	Gross Weight Value	(byte 1)	2
	Gross Weight Value	(byte 0)	3
2	Net Weight Value	(byte 3)	4
	Net Weight Value	(byte 2)	5
3	Net Weight Value	(byte 1)	6
	Net Weight Value	(byte 0)	7
4	Input Status Register	(MSB)	8
	Input Status Register	(LSB)	9
5	Command Status Register	(MSB)	10
	Command Status Register	(LSB)	11
6	Output Status Register	(MSB)	12
	Output Status Register	(LSB)	13
7	N°last page read or written	(MSB)	14
	N°last page read or written	(LSB)	15
8	1st set-up page word		16
			17

 Table 1: Input Data Area (if LUPE >> " ind_[h" or "dEP_[h" and DGT1)

15	8th set-up page word	30
		31

N°F	leg. Input Registers		N° bytes
0	Channel 1 Status Register	(MSB)	0
	Channel 1 Status Register	(LSB)	 1
1	Channel 2 Status Register	(MSB)	2
	Channel 2 Status Register	(LSB)	 3
2	Channel 3 Status Register	(MSB)	4
	Channel 3 Status Register	(LSB)	 5
3	Channel 4 Status Register	(MSB)	6
	Channel 4 Status Register	(LSB)	 7
4	Input Status Register	(MSB)	8

	Input Status Register	(LSB)	9
5	Command Status Register	(MSB)	10
	Command Status Register	(LSB)	11
6	Output Status Register	(MSB)	12
	Output Status Register	(LSB)	13
7	N°last page read or written	(MSB)	14
	N°last page read or written	(LSB)	15
8	1st set-up page word		16
			17

15	8th set-up page word		30
		 	31

<u>NOTE</u>: *GROSS WEIGHT and NET WEIGHT value format (0-3 registers)*Whole in absolute value (without decimals) *Example:* if 3 decimals are set, the 3,000 value is read 3000 If 2 decimals are set, the 3,00 value is read 300

Channel Status Register

Bit	Description	Bit Meaning	
		0	1
(LSB)			
0	Weight Polarity	+	
1	Weight Stability	NO	YES
2	Underload Condition	NO	YES
3	Overload Condition	NO	YES
4	Gross weight zone	Out of Zone	In Zone 0
		0	
5(*)	Not used		
6(*)	Not used		
7(*)	Not used		
(MSB)			
8	Not used		
9	Not used		
10	Not used		
11	Not used		
12	Not used		
13	Not used		
14	Not used		
15	Not used		

(*) Version 7.10 and next

2.1.1 INPUT STATUS REGISTER

(TABLE 2.1.1) (IF ŁYPE >> " md.[h" OR "dEP.[h")

It is the input register number 4; two bytes defined in the following manner:

Bit	Description Bit Meaning		leaning
		0	1
(LSB)			
0	Net Weight Polarity	+	
1	Gross Weight Polarity	+	
2	Weight Stability	NO	YES
3	Underload Condition	NO	YES
4	Overload Condition	NO	YES
5	Entered Tare Condition	NO	YES
6	Manual Tare Condition	NO	YES
7	Gross ZERO zone	Out of Zone 0	In Zone 0
(MSB)			
8	Input 1	DISABLED	ENABLED
9	Input 2	DISABLED	ENABLED
10	Not used		
11	Not used		
12	Not used		
13	Not used		
14	Displayed Channel (low bit) (1)		
15	Displayed Channel (high bit)(from 0 to 3) (¹)		

INPUT STATUS REGISTER (IF とりPE >> "ヒィ月っちり")

It is the input register number 4; two bytes defined in the following manner:

Bit	Description	Bit Meaning	
		0	1
(LSB)			
0	Not used		
1	Not used		
2	Not used		
3	Not used		
4	Not used		
5	Not used		
6	Not used		
7	Not used		
(MSB)			
8	Input 1	DISABLED	ENABLED
9	Input 2	DISABLED	ENABLED
10	Not used		
11	Not used		
12	Not used		
13	Not used		
14	Displayed Channel (low bit) (1)		
15	Displayed Channel (high bit)(from 0 to		

3) (1)

(1): High bit, Low Bit: $0 \ 0 \rightarrow$ Channel 1 $0 \ 1 \rightarrow$ Channel 2 (15) (14) $1 \ 0 \rightarrow$ Channel 3 $1 \ 1 \rightarrow$ Channel 4

2.1.2 OUTPUT STATUS REGISTER

(TABLE 2.1.2)

It is input register number 6; two bytes defined in the following way:

Bit	Description	Means bit	
		0	1
(LSB)			
0	RELE' 1	NOT EXCITED	EXCITED
1	RELE' 2	NOT EXCITED	EXCITED
2	RELE' 3 (DGTQ/DGTP/DGTPK)	NOT EXCITED	EXCITED
3	RELE' 4 (DGTQ/DGTP/DGTPK)	NOT EXCITED	EXCITED
4	RELE' 5 (DGTQ/DGTP/DGTPK)	NOT EXCITED	EXCITED
5	RELE' 6 (DGTQ/DGTP/DGTPK)	NOT EXCITED	EXCITED
6	Not used		
7	Not used		
(MSB)			
8	Not used		
9	Not used		
10	Not used		
11	Not used		
12	Not used		
13	Not used		
14	Not used		
15	Not used		

2.1.3 COMMAND STATUS REGISTER

It is input register number 5; two bytes defined in the following way:

 $\begin{array}{rcl} \underline{\text{High Byte}} & \rightarrow & \textit{Last command received} \text{ (see Table 2.2.1)} \\ \underline{\text{Low Byte}} & \text{low nibble} & \rightarrow & \textit{Counting of processed commands} \text{ (module 16)} \\ & & \text{high nibble} & \rightarrow & \textit{Result of last command received} \end{array}$

In which *Result of last command received* can take on the following values:

- OK = 0 Correct command and carried out
- ExceptionCommandWrong = 1 Wrong command
- ExceptionCommandData = 2 Wrong data in the command
- ExceptionCommandNotAllowed = 3 Not allowed command
- ExceptionNoCommand = 4 Inexistent command

2.2 OUTPUT DATA AREA

The output data area is <u>written</u> by the master (is therefore read by the instrument) and is made up of 16 registers, each of 2 bytes (32 bytes overall).

Tabella 2: Output Data Area

Reg.	Nr. Output Registers		N° bytes
0	Command Register	(MSB)	0
	Command Register	(LSB)	1
1	Parameter 1	(byte 3)	2
	Parameter 1	(byte 2)	3
2	Parameter 1	(byte 1)	4
	Parameter 1	(byte 0)	5
3	Parameter 2	(byte 3)	6
	Parameter 2	(byte 2)	7
4	Parameter 2	(byte 1)	8
	Parameter 2	(byte 0)	9
5	Not used		10
	Not used		11
6	Not used		12
	Not used		13
7	Not used		14
	Not used		15
8	1st set-up page word		16
			17
15	8th set-up page word		30
			31

2.2.1 COMMAND REGISTER

It is the output register number 0. It is made up of two bytes and can take on the following values, which correspond to the implemented commands described in the table.

Execution of a Command

The execution of a command is made when the contents of the Command Register vary (therefore in order to repeat the last command one should first set the Command register to the NO COMMAND value, and then to the command value).

The only exceptions are the READ_SETUP, WRITE_SETUP and CHANGE_PAGE commands, which are executed even upon just the varying of Parameter 1 (page nr. to be read/written). Therefore:

<u>To read various set-up pages</u> one just needs to set the READ_SETUP command with the first page that one intends to write in Param.1, then change each time Param.1 with the new page nr. to be read.

<u>To write various pages</u> one should set the WRITE_SETUP command with the nr. of the first page to be written in Param.1 and the data in registers 8-15 of the output area; then each time one varies the data of the registers 8-15 and the page nr. in Param.1.

TABLE 2.2.1: COMMAND REGISTER

Implemented Command	Command Register Value	Description
NO_COMMAND	0 (0000 Hex)	NO COMMAND
ZERO_REQUEST	1 (0001 Hex)	ZERO SCALE execution (*)
TARE_REQUEST	2 (0002 Hex)	AUTOMATIC TARE execution (*)
TAREMAN_REQUEST	3 (0003 Hex)	MANUAL TARE execution (*)
		(the value will be entered in Parameter 1 (²))
NET_SWITCH_REQUEST	4 (0004 Hex)	Display Switch on the NET WEIGHT (3) (*)
GROSS_SWITCH_REQUEST	5 (0005 Hex)	Display Switch on the GROSS WEIGHT (³) (*)
CHANNEL_1_REQUEST	6 (0006 Hex)	Switching on CHANNEL 1
CHANNEL_2_REQUEST	7 (0007 Hex)	Switching on CHANNEL 2
CHANNEL_3_REQUEST	8 (0008 Hex)	Switching on CHANNEL 3
CHANNEL_4_REQUEST	9 (0009 Hex)	Switching on CHANNEL 4
WRITE_SETPOINT_1	10 (000A Hex)	Scrittura SETPOINT 1
		(valore ON in Param. 1; valore OFF in Param. 2) (2)
WRITE_SETPOINT_2	11 (000B Hex)	SETPOINT 2 writing
		(ON value in Param. 1; OFF value in Param. 2) (2)
WRITE_SETPOINT_3	12 (000A Hex)	SETPOINT 3 writing
		(ON value in Param. 1; OFF value in Param. 2) (²)
WRITE_SETPOINT_4	13 (000B Hex)	SETPOINT 4 writing
		(ON value in Param. 1; OFF value in Param. 2) (²)
WRITE_SETPOINT_5	14 (000A Hex)	SETPOINT 5 writing
		(ON value in Param. 1; OFF value in Param. 2) (²)
WRITE_SETPOINT_6	15 (000B Hex)	SETPOINT 6 writing
		(ON value in Param. 1; OFF value in Param. 2) (2)
SET_OUTPUT	25 (0019 Hex)	Setting the RELAY (⁴)
READ_SETUP	26 (001A Hex)	SET-UP PAGE READING
WRITE_SETUP	27 (001B Hex)	SET-UP PAGE WRITING
WRITE_FLASH	28 (001C Hex)	SAVING THE SET-UP in FLASH
CHANGE_PAGE	29 (001D Hex)	ALIBI PAGE (⁵) or TRANSM PAGE (⁷) or COUNTING(⁹)
READ_ALIBI	30 (001E Hex)	WEIGH READING ON ALIBI (⁶)
WRITE_ALIBI	31 (001F Hex)	STORAGE OF WEIGH ON ALIBI (5)
HOLD_PEAK_WEIGHT	32 (0020 Hex)	BLOCK THE WEIGHT ON THE DISPLAY
UNLOCK_WEIGHT	33 (0021 Hex)	AFTER SECOND PEAK_HOLD_WEIGHT ALLOWS TO UNLOCK
		THE WEIGHT ON THE DISPLAY AND TO SEE THE EFFECTIVE
		WEIGHT
RESTART_INSTRUMENT	34 (0022 Hex)	RESTART THE INSTRUMENT
READ_CALIBRATION	35 (0023 Hex)	READ DATA OF CALIBRATION
WRITE_CALIBRATION	36 (0024 hex)	WRITE DATA OF CALIBRATION
POINT_ACQUISITION	37 (0025 hex)	ACQUISATION CALIBRATION POINT
ABORT_CALIBRATION	38 (0026 Hex)	CANCELLATION PROCEDURE CALIBRATION
KEYBOARD_ENABLE	40 (0028 Hex)	BLOCK KEYBOARD (PARAMETER 1 = 0) O UNLOCK
		KEYBOARD (PARAMETER 1 = 1)
NUMBER_OF_PIECES	41 (0029 Hex)	WRITE NUMBER OF PIECE WITH PARAMETER 1 THAT
		CORRESPONDING AT THE NUMBER OF PIECE
APW_INPUT	42 (002° Hex)	INPUNT DURING THE STATE OF INSERIMENT IN APW

		FROM KEYBOARD
APW_SET	43 (002B Hex)	SET THE AVERAGE PIECE WEIGHT , AND THE VALUE IS IN
		PARAMETER 1
SET_ZERO_TIMEOUT	44 (002C Hex)	SET THE MAX TIME OF EXECUTION OF THE ZERO
		FUNCTION (PARAMETER 1 = NEW VALUE IN SECONDI,
		MAX NUMBER OF SECONDO IS127)

(*) This command is not managed in the " $E_{\Gamma}R_{\Gamma}S\Pi$ " mode.

(²) <u>NOTE</u>: Value format of Parameter 1 and Parameter 2:

- \rightarrow For the MANUAL TARE (only Param1):
- → For SETPOINTS 1and 2: <u>Whole in absolute value (without decimals)</u>
- **Example:** If 3 decimals are set, in order to enter the value $3,000 \rightarrow$ one should write 3000 If 2 decimals are set, in order to enter the value $3,00 \rightarrow$ one should write 300

(³) : active functions only in NTGS mode (net / gross switch).

(⁴) <u>Setting of the RELAYS</u>

The status of the relays is settable using Parameter 1:

Parameter 1:

```
bit 0 \rightarrow \text{RELAY 1} in which bit 0 = 1 \rightarrow \text{RELAY 1} <u>CLOSED</u>; bit 0 = 0 \rightarrow \text{RELAY 1} <u>OPEN</u>
bit 1 \rightarrow \text{RELAY 2} in which bit 1 = 1 \rightarrow \text{RELAY 2} <u>CLOSED</u>; bit 1 = 0 \rightarrow \text{RELAY 2} <u>OPEN</u>
OPTIONAL RELAYS (ONLY DGTQ PB)
bit 2 \rightarrow \text{RELAY 3} in which bit 2 = 1 \rightarrow \text{RELAY 3} CLOSED; bit 2 = 0 \rightarrow \text{RELAY 3} OPEN
```

bit 2 \rightarrow RELAY 3 in which bit 2 = 1 \rightarrow RELAY 3 <u>CLOSED</u>; bit 2 = 0 \rightarrow RELAY 3 <u>OPEN</u> bit 3 \rightarrow RELAY 4 in which bit 3 = 1 \rightarrow RELAY 4 <u>CLOSED</u>; bit 3 = 0 \rightarrow RELAY 4 <u>OPEN</u>

bit $3 \rightarrow \text{RelAT} = 4$ in which bit $3 = 1 \rightarrow \text{RelAT} = \frac{1}{2}$ bit $3 = 0 \rightarrow \text{RelAT} = \frac{1}{2}$

- bit 4 \rightarrow RELAY 5 in which bit 4 = 1 \rightarrow RELAY 5 <u>CLOSED</u>; bit 4 = 0 \rightarrow RELAY 5 <u>OPEN</u>
- bit 5 \rightarrow RELAY 6 in which bit 5 = 1 \rightarrow RELAY 6 <u>CLOSED</u>; bit 5 = 0 \rightarrow RELAY 6 <u>OPEN</u>

bit 6 ÷15 (not used)

NOTES:

• Value format of Parameter 1 and Parameter 2 for the RELAYS:

→ <u>Bit configuration</u>

In the case a relay is linked to a setpoint, the command, relative to that relay, is ignored.

 The writing of the setpoint values does not cause the automatic flash saving, but are set temporarily. In order to save these in flash one should execute the WRITE_FLASH command.

(⁵) ALIBI PAGE

To go to the ALIBI page set the value 1000 in Parameter 1. With the writing command, if one wants to fill the page with the values described in the table below, one must first use this command and then transmit the writing command.

Format of the Parameter 1 value:

Whole in absolute value (without decimals)

	Input Data Area	Description
	(N° Byte)	
	16	Stored gross weight value (byte 3)
	17	Stored gross weight value (byte 2)
	18	Stored gross weight value (byte 1)
	19	Stored gross weight value (byte 0)
	20	Stored tare weight value (byte 3)
ш	21	Stored tare weight value (byte 2)
NG (s)	22	Stored tare weight value (byte 1)
P⊿ yte	23	Stored tare weight value (byte 0)
BI 6 b	24	ID: Weigh number (byte 3)
NLI (1	25	ID: Weigh number (byte 2)
4	26	ID: Weigh number (byte 1)
	27	ID: Weigh number (byte 0)
	28	Alibi status register (MSB)
	29	Alibi status register (LSB)
	30	Not used
	31	Not used

Table 2.2.1.1: CONTENTS OF ALIBI PAGE

• Format of the Alibi status register value:

2 bytes defined in the following way: BIT MEANING

bit from 7 to 0 🖻	Number of rewritings (from 0 to 255).
bit from 10 to 8 🛛	Number of scale (from 1 to 4).
bit 11 🖻	Type of tare; bit 11 = 1 P manual tare; bit 1 = 0 PP null or semiautomatic tare
bit 12 🛛	Not used
bit 13 🖻	Not used
bit 14 🖻	Not used
bit 15 🖭	Not used

(6) WEIGH READING ON ALIBI

To read a weigh stored in the ALIBI set the rewriting number in Parameter 1 and the weigh number (ID) in Parameter 2. The command automatically executes the change on the ALIBI page: see table 2.2.1.1.

Format of the Parameter 1 and Parameter 2 values:

Whole in absolute value (without decimals)

(⁷) TRANSM PAGE (only if <u>LYPE >> LrAn5</u>(1))

To go to the TRANSM page set the value 2000 in Parameter 1. With the writing command, if one wants to fill the page with the values described in the table below, one must first use this command and then transmit the writing command; after the start-up of the indicator, the value 2000 is set automatically as last page read.

Format of the Parameter 1 value:

Whole in absolute value (without decimals)

Table 2.2.1.2: CONTENTS OF TRANSM PAGE(2000)

	Input Data Area	Description
	(N° Byte)	
	16	Channel 1 weight value (byte 3)
	17	Channel 1 weight value (byte 2)
	18	Channel 1 weight value (byte 1)
	19	Channel 1 weight value (byte 0)
	20	Channel 2 weight value (byte 3)
IJ	21	Channel 2 weight value (byte 2)
PA ~	22	Channel 2 weight value (byte 1)
S	23	Channel 2 weight value (byte 0)
ISI 16 t	24	Channel 3 weight value (byte 3)
A	25	Channel 3 weight value (byte 2)
LR.	26	Channel 3 weight value (byte 1)
	27	Channel 3 weight value (byte 0)
	28	Channel 4 weight value (byte 3)
	29	Channel 4 weight value (byte 2)
	30	Channel 4 weight value (byte 1)
	31	Channel 4 weight value (byte 0)

Table 2.2.1.3: CONTENT PAGE TRANSM, NET WEIGHT (2001), ver. 7.10 AND NEXT

	Input Data	Description
	Area	
	(N° Byte)	
	16	Ch 1 net weight (byte 3)
	17	Ch 1 net weight (byte 2)
	18	Ch 1 net weight (byte 1)
	19	Ch 1 net weight (byte 0)
	20	Ch 2 net weight (byte 3)
	21	Ch 2 net weight (byte 2)
Σ	22	Ch 2 net weight (byte 1)
GE	23	Ch 2 net weight (byte 0)
2 A 2 A 16 b	24	Ch 3 net weight (byte 3)
	25	Ch 3 net weight (byte 2)
	26	Ch 3 net weight (byte 1)
	27	Ch 3 net weight (byte 0)
	28	Ch 4 net weight (byte 3)
	29	Ch 4 net weight (byte 2)
	30	Ch 4 net weight (byte 1
	31	Ch 4 net weight (byte 0)

Table 2.2.1.4: CONTENT TRANSM PAGE , TARE (2002), ver. 7.10 AND NEXT

	Input Data Area	Description
	(N° Byte)	
	16	Ch 1 tare weight (byte 3)
	17	Ch 1 tare weight (byte 2
	18	Ch 1 net weight (byte 1)
	19	Ch 1 tare weight (byte 0)
Σ	20	Ch 2 tare weight (byte 3)
N	21	Ch 2 tare weight (byte 2)
A	22	Ch 2 tare weight (byte 1)
TR oyte	23	Ch 2 tare weight (byte 0
1 64	24	Ch 3 tare weight (byte 3)
Z	25	Ch 3 tare weight (byte 2)
D A	26	Ch 3 tare weight (byte 1)
Р	27	Ch 3 tare weight (byte 0)
	28	Ch 4 tare weight (byte 3)
	29	Ch 4 tare weight (byte 2)
	30	Ch 4 tare weight (byte 1)
	31	Ch 4 tare weight (byte 0)

Tabella 2.2.1.5: CONTENT TRANSM PAGE, NET+TARE (2003), ver. 7.10 AND NEXT

	Input Data Area	Description
	(N° Byte)	
	16	Ch 1 net weight (byte 1)
	17	Ch 1 net weight (byte 0)
	18	Ch 1 tare weight (byte 1)
	19	Ch 1 tare weight (byte 0)
	20	Ch 2 net weight (byte 1)
5	21	Ch 2 net weight (byte 0)
PA ~	22	Ch 2 tare weight (byte 1)
V	23	Ch 2 tare weight (byte 0)
ISN 16 b	24	Ch 3 net weight (byte 1)
A ~	25	Ch 3 net weight (byte 0)
LR.	26	Ch 3 tare weight (byte 1)
-	27	Ch 3 tare weight (byte 0)
	28	Ch 4 net weight (byte 1)
	29	Ch 4 net weight (byte 0)
	30	Ch 4 tare weight (byte 1)
	31	Ch 4 tare weight (byte 0)

Commands that can be performed in the mode TRANSM (AFTER VERSION 7.10):

Modbus/Profibus Zero command (command 1) in Transm mode: there is the paramater 1 is to be set to a non zero value to indicate the scale channel that is to be zeroed.

Modbus/Profibus Tare command (command 2) in Transm mode there is the paramater 1 is to be set to a non zero value to indicate the scale channel that is to be tared.

Modbus/Profibus Preset tare command (command 3) in Transm mode: there is the paramater 2 is to be set to a non zero value to indicate the scale channel that is to be tared.

(9) COUNTER MODE

• PAGE 6000, only for DGT1 from ver. 7.11 and next in counter mode with values :

Tabella 2.2.1.6: CONTENT OF THE PAGE COUNTING

	Input Data Area	Description
	(N Byte)	A D/M docimals (byto 1)
	17	APW decimals (byte 1)
	17	APW decimals (byte 0)
Щ	18	APW unit (byte 1)
B	19	APW unit (byte 0)
P/	20	PCS value (byte 3)
Š ^t D	21	PCS value (byte 2)
1 16 b	22	PCS value (byte 1)
	23	PCS value (byte 0)
0	24	APW value (byte 3)
U	25	APW value (byte 2)
	26	APW value (byte 1)
	27	APW value (byte 0)
	28	
	29	
	30	

The command regarding the counting are : 41 (0x0029) - 42 (0x002A) - 43 (0x002B)

2.3 SET-UP AREA

The set-up area is the one stored in flash (1024 bytes) and is made up of 64 pages (from 0 to 63). In the case of an <u>approved instrument</u> it's not possible to write the metric parameters which are between page 0 and the first half of page 38. It is possible to write only the data between the second half of page 38 and page 63.

By writing one of the pages between 0 and 37 when the instrument is approved, the result of the command is ExceptionCommandNotAllowed,by writing instead the others one obtains CommandOk. In any case page 38 is not copied completely, but only the second half.

	Input Data Area	Output Data	Description
	(Byte Nr)	Area	
		(Byte Nr)	
	16	16	
	17	17	
	18	18	
	19	19	
Ŀ	20	20	
Ш С	21	21	RANGE 1 channel 1 (LSB)
Ă.	22	22	RANGE 1 channel 1
tes	23	23	RANGE 1 channel 1
dn	24	24	RANGE 1 channel 1 (MSB)
et (16	25	25	RANGE 2 channel 1
S S			(LSB)
le.	26	26	RANGE 2 channel 1
Ā	27	27	RANGE 2 channel 1
	28	28	RANGE 2 channel 1 (MSB)
	29	29	Not used
	30	30	Not used
	31	31	Not used

	Input Data Area	Output Data	Description	
	(N° Byte)	Area		
		(N° Byte)		
	16	16	Not used	
	17	17	RANGE 1 channel 1 Division	(LSB)
	18	18	RANGE 1 channel 1 Division	(MSB)
.0	19	19	RANGE 2 channel 1 Division	(LSB)
E	20	20	RANGE 2 channel 1 Division	(MSB)
Ð	21	21	Not used	
P /	22	22	Not used	
p: Vte	23	23	Channel 1 decimals	
i tu 6 b	24	24	Channel 1 Unit of Measure	(⁵)
Se (1	25	25		
ea	26	26		
Are	27	27		
	28	28		
	29	29		
	30	30		
	31	31		

	Input Data Area	Output Data	Description	
	(N° Byte)	Area		
		(N° Byte)		
	16	16	RANGE 1 channel 2	(LSB)
	17	17	RANGE 1 channel 2	
	18	18	RANGE 1 channel 2	
4	19	19	RANGE 1 channel 2	(MSB)
	20	20	RANGE 2 channel 2	(LSB)
5	21	21	RANGE 2 channel 2	
PA (s)	22	22	RANGE 2 channel 2	
o: l	23	23	RANGE 2 channel 2	(MSB)
1 10 10	24	24	Not used	
Set (1	25	25	Not used	
a U	26	26	Not used	
re	27	27	Not used	
4	28	28	RANGE 1 channel 2 Division	(LSB)
	29	29	RANGE 1 channel 2 Division	(MSB)
	30	30	RANGE 2 channel 2 Division	(LSB)
	31	31	RANGE 2 channel 2 Division	(MSB)

	Input Data Area	Output Data	Description
	(N° Byte)	Area	
		(N° Byte)	
	16	16	Not used
	17	17	Not used
	18	18	Channel 2 decimals
ы	19	19	Unit of Measure channel 2 (⁵)
	20	20	
5	21	21	
PA (s)	22	22	
): 	23	23	
tup 6 b	24	24	
	25	25	
a	26	26	
re	27	27	
4	28	28	
	29	29	
	30	30	
	31	31	

	Input Data Area	Output Data	Descriptio	on
	(N° Byte)	Area		
		(N° Byte)		
	16	16		
	17	17		
	18	18		
8	19	19		
8	20	20		
5	21	21		
PA (s)	22	22		
): 	23	23		
tup 6 b	24	24		
5et	25	25		
a	26	26		
re	27	27	RANGE 1 channel 3	(LSB)
4	28	28	RANGE 1 channel 3	
	29	29	RANGE 1 channel 3	
	30	30	RANGE 1 channel 3	(MSB)
	31	31	RANGE 2 channel 3	(LSB)

	Input Data Area	Output Data	Description	
	(N° Byte)	Area		
		(N° Byte)		
	16	16	RANGE 2 channel 3	
	17	17	RANGE 2 channel 3	
	18	18	RANGE 2 channel 3	(MSB)
m	19	19	Not used	
5	20	20	Not used	
5	21	21	Not used	
PA (s)	22	22	Not used	
): 	23	23	RANGE 1 channel 3 Division	(LSB)
t u 6 b	24	24	RANGE 1 channel 3 Division	(MSB)
ja 1	25	25	RANGE 2 channel 3 Division	(LSB)
a a	26	26	RANGE 2 channel 3 Division	(MSB)
re	27	27	Not used	
4	28	28	Not used	
	29	29	Channel 3 decimals	
	30	30	Channel 3 unit of measure	(⁵)
	31	31		

	Input Data Area	Output Data	Description
	(N° Byte)	Area	
		(N° Byte)	
	16	16	
	17	17	
	18	18	
-	19	19	
ŝ	20	20	
9	21	21	
PA (s)	22	22	RANGE 1 channel 4 (LSB)
yte	23	23	RANGE 1 channel 4
i up	24	24	RANGE 1 channel 4
jet 1	25	25	RANGE 1 channel 4 (MSB)
a a	26	26	RANGE 2 channel 4 (LSB)
re	27	27	RANGE 2 channel 4
4	28	28	RANGE 2 channel 4
	29	29	RANGE 2 channel 4 (MSB)
	30	30	Not used
	31	31	Not used

	Input Data Area	Output Data	Description	
	(N° Byte)	Area		
		(N° Byte)		
	16	16	Not used	
	17	17	Not used	
	18	18	RANGE 1 channel 4 Division	(LSB)
2	19	19	RANGE 1 channel 4 Division	(MSB)
ŝ	20	20	RANGE 2 channel 4 Division	(LSB)
IJ	21	21	RANGE 2 channel 4 Division	(MSB)
PA (sc)	22	22	Not used	
o: lyte	23	23	Not used	
1 1 6 b	24	24	Channel 4 decimals	
Set (1	25	25	Channel 4 unit of measure	(5)
ŋ	26	26		
Vre	27	27		
٩	28	28		
	29	29		
	30	30		
	31	31		

(⁵) <u>NOTE</u>: Meaning of the numeric value in the Unit of Measure field:

3.

0	\rightarrow	Grams
1	\rightarrow	Kilograms
2	\rightarrow	Tons
3	\rightarrow	Pounds

3. CALIBRATION SEQUENCE

The following pages content metrologic data ,that is possible read/write. Page 5000

		Description
	(N Byle)	
	16	Unit of measure (byte 1)
_	17	Unit of measure (byte 0)
ICI	18	1 st range division (byte 1)
Ð	19	1 st range division (byte 0)
FC	20	2 nd range division. (byte 1)
ßÖ	21	2 nd range divisiion. (byte 0)
H	22	Decimal (byte 1)
M	23	Decimal (byte 0)
TI 16 b	24	1 st range capacity (byte 3)
-A	25	1 st range capacity (byte 2)
	26	1 st range capacity (byte 1)
Ž	27	1 st range capacity (byte 0)
Б	28	2 nd range capacity
ΡA	29	2 nd range capacity
	30	2 nd range capacity)
	31	2 nd range capacity

Unit of measure

0	\rightarrow	g
1	\rightarrow	kg
2	\rightarrow	Т
3	\rightarrow	L

Page 5001

	Input Data Area	
	(N° Byte)	Description
	16	Calibration point (byte 1)
	17	Calibration point (byte 0)
z	18	1st calibration weight (MSB)
0	19	1st calibration weight
ЧТ	20	1st calibration weight
SR.	21	1st calibration weight (LSB)
e) ITE	22	2nd calibration weight (MSB)
NO NO	23	2nd calibration weight
D H O	24	2nd calibration weight
<u>н</u> О С	25	2nd calibration weight (LSB)
H A	26	3rd calibration weight (MSB)
<u>д</u> <u>р</u>	27	3rd calibration weight
ΛE	28	3rd calibration weight
>	29	3rd calibration weight (LSB)
	30	Calibration status (byte 1)
	31	Calibration status (byte 0)

State of Calibration:

Value	Denomination	Description		
0	CALIBRATION_NOT_STARTED	Calibration not is in execution		
1	CALIBRATION_ACQUISTION_UNDERWAY	Acquisition point calibration in progress		
2	CALIBRATION_ACQUISTION_OK	Point calibration successfully acquired		
3	CALIBRATION_ACQUISTION_ERROR	Error acquisation point calibration		
4	CALIBRATION_OK	Calibration OK		
5	CALIBRATION_ERROR	Error in Calibration		

Page 5002

	Input Data Area	
		Description
	(N° Byte)	
	16	Zero calibration ADC value (MSB)
	17	Zero calibration ADC value
F,	18	Zero calibration ADC value
	19	Zero calibration ADC value (LSB)
РС	20	1st calibration point ADC value (MSB)
Z	21	1st calibration point ADC value
0	22	1st calibration point ADC value
AT	23	1st calibration point ADC value (LSB)
3R , 16 ł	24	2nd calibration point ADC value(MSB)
LIE	25	2nd calibration point ADC value
CA	26	2nd calibration point ADC value
Е	27	2nd calibration point ADC value (LSB)
ŊG	28	3rd calibration point ADC value (MSB)
P/	29	3rd calibration point ADC value
	30	3rd calibration point ADC value
	31	3rd calibration point ADC value (LSB)

Calibration commands:

Number	Command	Note
35 (0023 Hex)	READ_CALIBRATION	Copy of calibration data of the channel equal to
		parameter 1 into temporary area (accessible via the
		pages 5000 to 5002)
36 (0024 Hex)	WRITE_CALIBRATION	Parameter 1=0 store of temporary data into calibration
		data (non-volatile memory)
		Parameter 1=5000 copy data output area values (byres
		16 to 31)Into the temporary calibration area related to
		metrologic values
		Parameter 1= 5001 copy data output area values (byres
		16 to 31)Into the temporary calibration area related to
		calibration weights values
		Parametro 1=5002 copy data output area values (bytes
		16 to 31) into the temporary calibration area related to
		calibration ADC values
37 (0025 Hex)	POINT_ACQUISITION	Parameter 1 is the point to acquire
38 (0026 Hex)	ABORT_CALIBRATION	Abort the calibration under way

Calibration sequence

Passo	Description	
А	Use command READ CALIBRATION with parameter 1 equal to the channel to calibrate (1st channel is zero). If type is equal to dependent channels parameter 1 can be equal to zero only.	
В	If necessary , insert metrologic value on page 5000 and use the command WRITE_CALIBRATION with parameter 1 equal to 5000.	
С	set up calibration point on page 5001, byte 16-17.	
D	Set up the value of weigh(s) of calibration on page 5001 , i valori dei pesi di calibrazione alla pagina 5001, from byte 18 al 29, and use the command WRITE_CALIBRATION with parameter 1 equal to 5001	
E	If a theoretical calibration is to be executed, insert the values ADC directly on the page 5002 and use th command WRITE_CALIBRATION with parameter 1 equal to 5002.	
F	Otherwise set the page 5001 to be able to read the log calibration status (byte 30-31), so unload the platform and use the command POINT_ACQUISITION with parameter equal to 0.	
G	wait for calibration status is equal to CALIBRATION_ACQUISTION_OK or CALIBRATION ACQUISTION ERROR	
Н	If you run into an error repeat from step F.	
I	if successful, load the platform with 1st calibration weight and use command POINT_ACQUISITION with parameter equal to 1	
J	wait for calibration status is equal to CALIBRATION_ACQUISTION_OK or CALIBRATION_ACQUISTION_ERROR	
К	If you run into an error repeat from step J.	
L	If successful repeat from step J-to- date calibration points (if any).	
м	use command WRITE_CALIBRATION with parameter 1 equal to zero to store the new calibration	
Ν	wait for calibration status is equal to CALIBRATION_OK or CALIBRATION_ERROR	
0	on error repeat from step a	

4. SETTING OPERATING MODE

For instruments DGT4, DGTP, DCTP, DGTP ver. 7.12 and later can read and set the operating mode between independent channels, channels and employees Transm remotely.

Page 5003		
	Input Data Area	Description
	(N° Byte)	
	16	Operating mode (MSB)
F	17	Operating mode (LSB)
Z	18	Number of channels (MSB)
D	19	Number of channels (LSB)
z	20	
Ō	21	
∎ (≘	22	
oyte	23	
-IB 16 b	24	
	25	
Ц Ц	26	
ō	27	
Щ	28	
AC	29	
4	30	
	31	

Operating mode:

Value	Mode
0	Independent
	channels
1	Dipendent
	channels
2	Transm

To set the operating mode, on a non approved instrument, it must be written in bytes 16-17 of the output mode you want to use, in bytes 18 to 19 the number of channels to be used and then use the command with parameter WRITE_CALIBRATION 1 equal to 5003. the instrument stores the new mode and automatically reboots.

5. HUB MODE

This mode can be is used whit the tools DGT1/DGT1S associated with one of following modules

- -PROFIBUS1S
- -PROFINET1S
- -ETHERCAT1S
- -DEVICENET1S
- -CANOPEN1S

Versions of DGT1 prior to 7.13(only Profibus) To use in this way set on DGT1/ DGT1S on the 485 network:

Step setup	Value
$SEE_{uP} \rightarrow SEr \ AL \rightarrow PC \ SEL$	485
$SEE_{UP} \rightarrow SEr \ iAL \rightarrow CON_PC \rightarrow PCNOdE$	РЬ_ПиLE
$SEE_{UP} SEr AL CON_PC PCNOdE PrO_Rdd$	Profibus ID of the module
$SEE_{UP} SEr_{RL} CON_{PC} PCNOdE SCR_{Rdd}$	485 address of DGT1 (from 1 with
	consecutive values)
$SEE_{UP} SEr _{iRL} CON_PC PCNOdE nuN_SCR$	Number of DGT1s of the 485 network
$SEE_{UP} SEr AL CON_PC bAud$	I IS200

Version of DGT1 7.13 and next

To use in this way set on DGT1/ DGT1S on the 485 network:

Step setup	Value
$SEE_{uP} \rightarrow SEr \ AL \rightarrow PC \ SEL$	485
$SEE_{UP} \rightarrow SEr \ iAL \rightarrow CON_PC \rightarrow PCNOdE$	FLd_bu5
→ 6u5_E9P	Ргоғ ıb : Profibus
	EE
	Profinet ، : Profinet
	EEh_[ብະ : Ethercat
	[AnoPn : CANOpen
	dEU_nEL : DeviceNet
Other parameters depending on the protocol selected:	
$SEE_{UP} SEr AL CON_PC PCNOdE nuN_SCA$	Balance number on the 485 network
$SEE_{UP} SEr AL CON_PC PCNOdE SCR_Rdd$	Address 485 of the DGT (from 1
	consecutive value)
$SEE_{UP} SEr IAL CON_PC bAud$	I IS200

Parameters dependent from selected protocol : read paragraph 1.2

Profinet NOTE: The name of the node to be used in Profinet project associated with the master node of the network is given by dini- <IP4>, where IP4 is the last byte of the IP address entered in the configuration of DGT1, even if you use the 'self-configuration of the IP address. Eg. IP = 192.168.1.10, the node name will dini-010.

To check from DGT1 if the 485 network works: go to the configuration menu step $d_1R_2 \rightarrow 5_5 SCR_2$

The scale will execute a continuous cycle to check if the scales on the network work.

-Value 1 means that the selected scale is on-line.

-Value 0 means that the selected scale is off-line.

With arrow keys the instrument enters in the manual scan.

Press C key to exit.

When a DGT is connected to the 485 network shows on the led display, for a few seconds, the message PB.CONN, then there are no more messages about Profibus.

When the Profibus master connects the yellow led of the module will turn on.

5.1 OUTPUT DATA AREA

The area of Profibus output is composed of 32 bytes whose structure is that indicated by Table 1.

Byte	Data
1	Scale Command register(MSB) $ ightarrow$ to which scale send the command (7F Broadcast)
2	Scale Command register (LSB) \rightarrow command
3	Data
32	Data

Table 1 Output data area

The Command Register has the structure:

MSB: to which scale of the 485 network send the data of the area $(1 \rightarrow \text{scale 1}, 2 \rightarrow \text{scale 2}, ...)$ **LSB**: command, ignored by hub module.

The module will send to the selected scale the whole area as received by the Profibsus master, but with the MSB byte of the Command Register equal to zero.

Commands with MSB greater than 0x6F will be managed by the hub module.

Commands:	
Command (Hex)	Description
F000	Fill in the Input Data Area with scale data system (Table 4)
F001	Fill in the Input Data Area with the data received from the scale 1
F002	Fill in the Input Data Area with the data received from the scale 2
•••	
F010	Fill Input Data Area with scale 16 data
F100	Fill Input Data Area with status data of the system (Tab. 2)
F200	Scan of the 485 network. Useful if some scales are not connected and want
	check if they returned on-line.
F300	Rereading network settings from the scale 1 and scanning network. It also
	allows the change in the number of scales in the network, whether it varies in
	scale 1.
7Fxx	Enter the Output data area in the broadcast, in all scales of the subsystem
	485 (with Modbus address zero)

Nota: commands in broadcast not provide feedback from the balance so it is said they are actually carried out by all the scales, to ensure that they execute you must control the outcome of the controls and counter balances.

5.2 INPUT DATA AREA

In the Input data Area can be filled with different pages, see Table 2.

Page	Profibus command (hex) to change page
Network data page	F000
Scale 1 data	F001
Scale 16 data	F010
Network status	F100

Table 2 Input Data Area pages

5.2.1 NETWORK PAGE DATA

The page has the structure of Table 3.

Byte	Data
1	Scale 1 data (byte 1)
2	Scale 1 data (byte 2)
3	Scale 1 data (byte 3)
4	Scale 1 data (byte 4)
5	Scale 1 data (byte 5)
6	Scale 1 data (byte 6)
7	Scale 1 data (byte 7)
8	Scale 1 data (byte 8)
9	Scale 2 data (byte 1)
10	Scale 2 data (byte 2)
11	Scale 2 data (byte 3)
12	Scale 2 data (byte 4)
13	Scale 2 data (byte 5)
14	Scale 2 data (byte 6)
15	Scale 2 data (byte 7)
16	Scale 2 data (byte 8)
•••	
121	Scale 16 data (byte 1)
122	Scale 16 data (byte 2)
123	Scale 16 data (byte 3)
124	Scale 16 data (byte 4)
125	Scale 16 data (byte 5)
126	Scale 16 data (byte 6)
127	Scale 16 data (byte 7)
128	Scale 16 data (byte 8)

Table 3 Network page data

Single scale data

Byte	Data
1	Input/output status
2	Gross weight (B2)
3	Gross weight (B1)
4	Gross weight (B0)

5	Scale status
6	Net weight (B2)
7	Net weight (B1)
8	Net weight (B0)

Table 4 Single scale data in the network page data

Input/output status

Bit	Data
0	Input 1 status
1	Input 2 status
2	Output 1 status
3	Output 2 status
4	Last command result (0: ok, 1: error)
6-5	Command counter (modulo 4)
7	Always 1 (scale present bit)

Table 5 Input/output status

Scale status

Bit	Data
0	Net weight polarity
1	Gross weight polarity
2	Weight stability
3	Underload condition
4	Overload condition
5	Entered tare condition
6	Manual tare condition
7	Gross zero zone

Table 6 Scale status

5.2.2 SCALE 1...N PAGE DATA-

Data are the same of the 1 to 1 function mode.

5.2.3 NETWORK STATUS PAGE-

Byte	Data		
1	Number of the scales of the system		
2	Scale 1 state		
3	Scale 2 state		
17	Scale 16 state		
	0		
128	0		

Table 7 Network status page

Scale state

Value	Meaning
0	Scale not part of the network
1	Scale on-line
2	Scale off-line

To have a scale back on-line after it failed it is possible:

- -Restart the module
- -Execute by the Profibus master the command 0xF200
- -Execute by the Profibus master the command 0xF300, after this command the module will read from scale 1 the network configuration and will set as Input Data Area the Network Data page

5.2.4 SCALES SCAN RATE

Table 9 shows the frequency, in the second reading, to update data in the input each balance when you have the page with the data condensed balances network.

	Number of the scale of the 485 network				
Baud rate	1	2	4	8	16
115200	54	27	13.6	6.8	3.6
57600	42	21.2	10.6	5.8	3
38400	40.8	20.4	10.2	5.2	2.6
19200	33	16.6	8.4	4.2	2.2
9600	20.4	10.2	5.2	2.6	1.4

Table 8 Scales scan rate

5.3 GSD FILE

Device name	DINIPB
Manufacturer ID	0DE1

Available GSD modules.

Module	Description
IN/OUT: 128 Byte (64 word)	128 input bytes + 128 output bytes

Table 9 GSD File module

5.4 FILE EDS ETHERNET/IP

Device name	DINI NIC 50-RE/EIS	
Manufacturer ID	283	
Product ID	0x10D	

Modules

Module name	Number od modules	Description
Input (T→O)	1	128 byte input area module
Output (O→T)	1	128 byte output area module

T: target

O: originator

5.5 FILE GSDML PROFINET

Device name	dini-xxx
Manufacturer ID	011E
Product ID	010A

 Modules
 Number module
 Description

 64byteinput
 2
 64 byte module for the input area

 64byteoutput
 2
 64 byte module for the output area

5.2 FILE ESI ETHERCAT

Device name	DINI NIC 50-RE/ECS
Manufacturer ID	0xE0000044
Product ID	0x000000B

Modules

Name Module	Number module	Description
Input	1	200 byte module for the input area
Output	1	200 byte module for the output area

5.3 FILE EDS CANOPEN

Device name	DINI NIC 50-COS
Manufacturer ID	0x0000044
Product ID	1541540

Modules

Name Module	Number module	Description
Input	64	8 bytes modules for the input area (TXPDU). Min. 4 TXPDU (32 byte)
Output	64	8 bytes module for the output area (RXPDU). Min. 4 RXPDU (32 byte)

5.4 FILE EDS DEVICENET

Device name	DINI Slim-DeviceNet NIC 50-DNS
Manufacturer ID	283
Product ID	35

Modules

Name Module	Number module	Description
Input (Production)	1	128 byte module for the input area
Output	1	32 byte module for the output area
(Consumption)		

5.5 MESSAGES DISPLAYED BY DGT1

Profibus

At the first interrogation DGT1 by the module ,the display shows the message PB.CONN, then you no longer have any message for the Profibus.

When the Profibus master connects illuminates the yellow LED module.

Other fieldbus

As soon as it is available to DGT1 This displays the firmware version of the Hub in the form fr.xx.yy where xx.yy is the release.

At the first interrogation DGT1 by the module the display shows the message Fb_E0nn.

When communication between the module Hub and Fieldbus network is operational, on DGT1 the displays Fb_{-} $\Box F$.

In case of errors the DGT1 displays every 5 seconds the message Fb_Err alternating error code. In the event that there is communication between the module and DGT1 Hub after 30 seconds from the DGT1 display every 5 seconds the message F_bu5_Er .

Message	Meaning
Fbu5_Er	No connection received from module Hub after 30 second since system start
F.R.xx.yy	Firmware version of the module hub
F_6_[0nn	Start the communication between hub module and scale
F_6_0R	Communication on Fieldbus network configurated and running
F_b_Err + code	Error state , see table error codes

Table error code:

Code	Meaning
1000	Fatal error in Hub module
1001	Inconsistency between protocol type selected and the one managed by the
	Hub module, eg. Hub type DeviceNet module with Profinet protocol
	selected on DGT1
1-18	Other fatal error in Hub module
000001 and the	Unrecoverable error module Hub
following	

Some error of network:

Code	Meaning
000140	General network error
000141	Connection closed
000142	Time-out Connection
000143	Isolated network
000144	Duplicated node
000145	Network cable disconnected